	
	
	

	
	Central module : database management
	

	
	Central module : database management
	

[bookmark: d0e1]1. Central module : database management
In this section we discuss the 'Central' module, which is the core of the ABCD system : this is the place where system managers and librarians will interact with the system most of the time. Such interaction is, technically speaking, about managing databases in one or more ways : creating them, maintaining them, filling them (e.g. 'cataloging') and using them for administrative purposes (acquisition, circulation, statistics).
Within this Central module, there are three main sub-modules : cataloging as part of database-administration, acquisitions and circulation. They can easily be opened from the main menu's right upper corner sub-modules menu, where also the language can be selected :
[bookmark: d0e8]Figure 1. sub-module's menu in Central

In terms of daily operations however acquisitions, cataloging and circulation ('loans') will be much more important and take by far the largest share of 'operations time'. That is also why they got their own 'submodule' selection in this menu. Therefore we will deal with these more every-day's functions in separate chapters of this manual. So, in this specific system management section, we will review mainly the basic techniques of one of the most powerful functions of ABCD : creating new databases and modifying database structures. Since ISIS-databases don't require sophisticated 'normalized' relational structures and still can cope with elements in many-to-many relationships (like authors with publications), ABCD can be used to deal with any such 'locally' created database relatively easily. We recommend ABCD for environments where several such applications, like e.g. Institutional repositories, cultural heritage collections, vocabularies and ontologies or even just 'snippets' (loose textual information units), are likely to be created and used, and therefore need a flexible management tool.
We discuss in the following sections each of the options given in the main menu of ABCD Database management :

[bookmark: d0e27]Note
This menu is created in the PHP-script 'homepage.php' in the folder '\ABCD\www\htdocs\central\common' where each login level gets its own function to create the menu (e.g. function MenuAdministrador() for the system administrator), so if it is necessary to change the sequence of the functions of this menu, this file has to be edited by someone who understands the HTML-coding inside.
We prefer to discuss the options in this main menu in a slightly different sequence (which can be obtained also in the menu by editing the above mentioned 'homepage.php' script), because before doing anything else the Users Administration should be at least performed once to define a local System Administrator and probably (quite) some other system users. or 'operators' (as distinguished from library patrons or 'end users').
In view of the importance of the 'Data Entry' menu option here, which is in fact the 'cataloging module' of ABCD, a dedicated section of this manual will be devoted to it following the discussion of the other Central functions. Also the procedures to follow to create copies and loan-objects for the inventory resp. loan-databases will be explained there as they are part of the Data Entry function.
The resulting structure of this chapter of the manual largely co-incides with the main Central menu options, albeit that for the 'data-entry' section a separate chapter will be added.
[bookmark: d0e36]Figure 2. Structure of Database Administration Chapter

[bookmark: d0e43]1.1. Users and profiles administration
We discuss the management of profiles and users separately even if they go together under one main menu option 'users management' : the users management requires profiles to exist first, since users have to be made members of a profile. Users can adhere to only one profile, but a profile can have mixed components (e.g. authorization for both acquisition and circulation sub-modules) and ABCD can maintain as many profiles as needed.
The screen following the selection of the 'Users Administration' option in the main Central menu will show 2 options :

The second option of managing the profiles is discussed first as these need to pre-exist before one can deal with operator records.
[bookmark: d0e58]1.1.1. Profiles administration
An ABCD profile is a set of databases (with their worksheets and print formats) and actions of functions allowed for that profile. So the profile administration has two parts : a list of databases allowed to be accessed by members of this profile and a list of actions allowed to be performed by this profile. In fact the list of databases allowed to access will define the menu of databases to select from in the main Central menu, the authorized PFT's and FMT's (display formats and worksheets) will define the resp. lists which can be used in the right-hand upper corner menu's during data-entry. On the other hand, the list of activated 'actions' will define the menu items displayed when entering the system or opening a new menu.
For each available database - except special ones like the access-database itself which is only accessible by administrators - ABCD will present a list of display formats and a list of worksheets for that specific database. Whereas some special reserved databases (e.g. suggestions, loanobjects...) were not included in this list in previous versions from v1.2t, now all databases included in the 'list of available databases' can be selected or not for the profile. This creates some risks of which the administrator giving access to them should be aware : e.g. direct access to databases like 'copies' and 'loanobjects' allows operators to delete or add records without the built-in control mechanisms which ABCD applies to avoid creation of orphan records (e.g. a copy of a title which has been removed from the catalog is an orphan as it has no more parent in the catalog) or inconsistencies in between copies and loanobjects. In theory an operator can manually change the barcode of an object in the copies-database, but forget to do this in the loanobjects database. Such errors are normally not possible when using the special procedures to create copies from the catalog and loanobjects from the copies. The advice is here : beware of including databases in the list of available databases and profiles which are not needed really !
The illustration here shows an example (partly) where the MARC21 and CEPAL databases are activated, for all display formats but only textual materials cataloging via its dedicated worksheet. Also most cataloging actions are allowed but not e.g. creation of inventory copies.
[bookmark: d0e67]Figure 3. ABCD Profiles administration

Using the combinations of database-access, database-print formats and -worksheets access and a rather granular authorisation of actions (e.g. there are separate authorisations for delete and undelete records), we believe this should allow administrators to arrange access to the system in a way well-suited to their workflow and organisation. A request to allow setting authorisations of actions for each database individually is accepted as a future possibility but not yet implemented. But : already with the now existing tool one can create a profile for one specific database with specific action authorisations, so one can already meet this end half-way.
[bookmark: d0e76]Note
The profiles are kept in the subfolder 'profiles' of the folder bases/par. One can find in that folder one file for each created profile, which is a text file with in there key-value lines. A list of profiles is kept in the file 'profiles.lst' and a list of actions in 'profiles.tab' (using the usual 2-column for internal and display-values for each action). Whereas ABCD normally takes care of these files, in principle it is possible to edit these files manually, if sufficient caution is applied to avoid logical conflicts or wrong parameters. A simple example of such key-value is the first line indicating the name of the profile : 'profilename=dbadm'. There after one will find the list of allowed databases (e.g. 'db_marc=marc'), with the definition of PFT and FMT's allowed (e.g. 'biblo_pft_ALL=on' will allow all display formats for this profile and 'biblo_fmt_mm=mm' will allow the 'mm' worksheet), followed by action-authorisations, e.g. 'CENTRAL_IMPEXP=Y' will allow import/export in the Central module.	Comment by tg: Is it three or the
Using the combinations of database-access, database-print formats and -worksheets access and a rather granular authorisation of actions (e.g. there are separate authorisations for delete and undelete records), we believe this should allow administrators to arrange access to the system in a way well-suited to their workflow and organisation. A request to allow setting authorisations of actions for each database individually is accepted as a future possibility but not yet active. But : already with the now existing tool one can create a profile for one specific database with specific action authorisations, so one can already meet this end half-way.
A typical 'special' profile, requested by many ABCD-users, is a profile of catalogers who can also create copies for the inventory and loanobjects for the circulation system. For this to work, one has to add the copies-database to the list of allowed databases and the actions 'Add, edit, delete copies' and 'Add to items' (which are loanable objects).
Once suitable profiles are created in the system, the administrator can deal with user (operator) records to assign to the said profiles.
[bookmark: d0e97]1.1.2. Users administration
The Users administration option of the main ABCD Database Administration menu is a specific case of database-management, using mostly the general techniques discussed in this section, but for a specific database 'ACCES' in which only the System Administrator can create profiles and ('register') new users or edit them.
[bookmark: d0e102]Note
IMPORTANT ! Before doing anything else, ABCD should get, by using this Users Administration option, a new, local System Administrator with his/her own login data ! The default login 'abcd/adm' will be widely known as it is published, so doesn't give any security indeed !
The option on managing users is presented by first showing the existing users (there should be at least one 'System Administrator' user !) and giving the options to either edit these, delete or add (create) a new user.
When clicking on the 'record edit' icon (first one of the three presented for each user :) the record with the user data will be shown in an interactive edit-form :

This edit form has the following parts :
1. [bookmark: d0e125][bookmark: d0e124]the user name, which can be a full name
2. [bookmark: d0e128]the login to be used in the login screen, mostly a shorter name
3. [bookmark: d0e131]the password for this user (for encryption check the $MD5 parameter of config.php, discussed above)
4. [bookmark: d0e134]the profiles which have been created and which can be assigned to this user. A set of demo-profiles is included with the ABCD-installation package.
5. [bookmark: d0e137]the 'expiry' date for the current user, in the 'normal' date-format (as defined in config.php) and the mandatory ISO-date format which will be created automatically by the software itself.
Once the form is properly filled in and saved, immediately this user can login and access the authorized parts of ABCD Central.
[bookmark: d0e142]1.2. Creating a new database in ABCD
After selection of the 'Create Database' menu option, the following 3 elements need to be specified :

In the first box the software asks for the 'name of the database', which will be the real internal file name of the new database. These names no longer are confined to the old-style '6 characters' name of CDS/ISIS or WinISIS, but short names are still preferable. The name as presented to the users will be specified in the 2nd box : the 'description'.
[bookmark: d0e156]Tip
Database names and descriptions can be approached directly in the file 'bases.tab' in the folder \ABCD\www\bases. In this file each database, provided to users, has one line with each two values : the 'name' and the 'description', separated by a pipe ('|') .
The 3rd box will always provide the options 'new database' - meaning creating a database from scratch - and 'WinISIS database' - meaning copying an existing structure of a (Win)ISIS database or in fact any ISIS-database with a FDT, FST and PFT. Then also the existing databases will be provided as models to be used as the basis from which to create the new database. We only deal with the first 2 options, as copying from an existing ABCD-database is quite straight-forward (ABCD simply creates the database by copying all necessary files into their appropriate folders and adding the new database to the list of existing databases).
The creation of a new database 'from scratch', meaning : not based on an existing model but starting from a zero-basis, involves understanding quite some ISIS-techniques, esp. the Formatting Language, because this will be used not only in the creation of the presentation format of the new database, but also in several ABCD-specific attributes of the fields (in both the FDT and data-entry worksheet) and the FST for indexing.
[bookmark: d0e162]1.2.1. Creation of a new database from scratch
The possibility for ABCD administrators to create their own databases with their own structures is a not-so-common feature in library automation systems but is directly derived from the basic database-philosophy of the ISIS-software family : a non-relational, 'no-SQL' or 'schemeless' approach resulting in a high flexibility without giving up on power in those areas where it really matters in document-oriented systems : information retrieval and capability to deal with complex document-structures.
The users who want to create a database using ABCD need to be aware of the fact that some efforts will be needed : both in understanding the con's and pro's of many options to take (e.g. a simple bibliographic structure or a very complicated one like MARC ?) and in how to correctly apply these into ABCD. ABCD tries to make it as easy as possible but still real efforts will be needed. In view of the potential benefits, like e.g. the possibility to create local databases for specific projects next to the general library catalog (as practiced with CDS/ISIS software in a countless number of larger scientific institutes where the library uses a 'classic' - but 'closed' - system) and integration very different resources into one environment, as can be done with ABCD esp. using the Site. But it has to be acknowledged that creating a database from scratch is not a daily activity, most administrators will do this only once or twice in their career, so an additional effort to cope with the complexities and many error-prone actions in the process of creating a database, can be justified.
This feature at the same time also creates some complexity and risks for errors in the ABCD software as such : without knowing in advance which exact structure(s) will be used to deal with , all scripts and functions need to be programmed very carefully in an open way to accommodate all thinkable options and possibilities. Nevertheless this feature has now been used by quite some ABCD-users to good and quite stable results, which should encourage administrators willing to engage into database-creation.
Needless to add that for educational purposes, e.g. training students in librarianship or information science, this option without doubt is one of the most useful ones : students can be taught not only about bibliograhpic standards (e.g. MARC21, CEPAL) but also about principles of database structures, fields, validation, user-machine interaction and many more aspects of 'the art of information management'.
We will introduce some ISIS-database concepts here and explain how they are implemented into ABCD, but restrict thereafter the example database-creation to a bare-minimum, allowing the initialisation of a database. Further on in this manual there will be more detailed discussion with examples of more advanced database-elements.
[bookmark: d0e176]1.2.1.1. The main hierarchical levels of databases
Databases in most cases come as part of a 'database management system' in which many databases can exist. This is the highest hierarchical level therefore. Within a DBMS databases exist, and within databases more or less structured information is grouped into units called 'records'. As in a programming language a record in memory management is a 'pre-structured' container of several distinguished pieces of information, the same concept exists in e.g. bibliographic records with as the pieces elements like title, author, publisher, keywords etc. In a typical administrative database a record will contain information such as name, address, age, sex etc. into combined units : again this is the idea of records.
Going down one level in the hierarchy gives us the 'fields' which reside into a record. In most databases fields are the smallest - lowest level - units inside a database the software can access, resulting in a 4-level hierarchy : database-system, database, record and field. Talking in terms of real physical units like people, one could say : people live in the Universe (the DBMS) on Earth (the database), within Earth they live in a continent and/or a country, within a country there is a municipality unit, in which streets are located and within the streets we have buildings. Within the buildings people can live e.g. on a certain floor in a certain room. So we have surpassed the 4-level hierarchy already by far.
So, in order to allow even more precise 'localisation' of information units, ISIS from the very beginning added at least one structural level : subfields. This idea fully complies with the ISO-2709 and MARC concepts or is taken from these standards as a matter of fact. Moreover, inside subfields (which 'live' inside fields which are parts of records as parts of a database) ISIS can also 'recognize' words, not as a structural part but at least in some indexing mechanisms words can be counted and their position used for proximity-based searching.
Only 'XML' (eXtensible Markup Language) goes even further in allowing sub-dividing into more hierarchical levels : in fact due to the aspect 'extensible' anyone can define any number of hierarchical levels, suitable for e.g. describing journals : from a journal title to volumes, going down to issues, inside the issue as one specific document there are 'articles' which can have parts, inside parts chapters, inside chapters maybe paragraphs... already reaching 7 hierarchical levels.
Each of the structurally identifiable elements offer 'handles' to get better grips to the information in the system and adds power to retrieval mechanisms, e.g. searching within specific fields, subfields or full-text indexing (=indexing by word). When defining or creating a database, administrators should consider all this, as the input-software, e.g. providing worksheets, defines the 'granularity' of the information stored and for both indexing and presenting the information this granularity can be used to a certain 'less or more' extent. In reality information can be stored as 'snippets' (unstructured text like in a 'personal information system' as the computer equivalence of a fridge with post-its sticked on) up to highly detailed units with hundreds of fields as in MARC. This manual is not a course on documentary information management but needless to state that its principles are applicable or even unavoidable to consider when working with ABCD as a database-administrator creating new databases.
[bookmark: d0e189]1.2.1.2. The main constituting 'structures' of an ABCD database
Since ABCD-databases are simply full-fledged ISIS-databases, we inherit these main constituting parts from the ISIS-technology, and we will discuss them here to explain the principles and the basic part needed to allow database-creation - for more detailed discussions we refer to the section on 'Editing/Updating database definitions'. These main parts are resp. :
1. [bookmark: d0e195][bookmark: d0e194]the Field Definition Table or FDT
Before one can start using a database, one needs to know which elements can be used within the database. The concept of fields, generally used in all databases, perhaps is sufficiently explained by simply giving the usual examples of 'title, author, publisher' in a bibliographic record or 'name, street, phonenumber, e-mail' for personal address systems. But for the concept of subfields one has to engage into still ongoing debates on advantages and disadvantages of subfields, on which one has to take a stand when creating a structure. Generally speaking, and without going really into this intellectual debate, one can say that keeping elements together as subfields into repeatable units is the preferred way. E.g .in order to never mix first names (Karl and Vladimir) with last names (Marx and Lenin) it is safer to keep them together as Marx+Karl and Lenin+Vladimir whereas the '+' - or any clearly marked 'separator' for subfields, ISIS using '^' followed by a one-character identifier - allows the software to also deal with the elements separately, e.g. indexing as 'Marx, K.' but also as 'Karl Marx'. In many languages the author names are not that easily recognisable as for their first- and surname parts, so from a 'user-friendliness' point of view this certainly makes sense.
Whereas in most databases fields are to be identified clearly and will always be present in the 'tables' (representable as rectangular 'matrices', so they need to keep their rectangular form by keeping the substituting elements constant), in ISIS one can consider the Field Definition Table (FDT) rather as a repository of possible fields, which can yes or no be present in the record. In fact one can even use fields - identified by their numerical 'tag' - in ISIS without having described them in the FDT, but then of course not allowing all possibilities of fields present in the table (e.g. knowing the 'name' of a tag). This is one element leading to the earlier mentioned flexibility.
One more general characteristic of the ABCD FDT is that , differently from other ISIS-family members, it contains also the worksheet specifications for each field : which graphical element will 'take' input from the cataloger in which way ? Again one should consider the description in the FDT as rather the definition of the 'default' input behavior of the (sub-)field since it is always possible to create worksheets with different specifications for the same field. We refer to the discussion of the worksheets later on.
Currently ABCD has opted for a spreadsheet-like presentation of the FDT, using an advanced JavaScript-library (dhtml-grid) which allows editing within 'cells' of a grid within the WWW-page. Unfortunately only Firefox and IE browsers support(ed) this advanced tool fully (e.g. Chrome and Opera presenting the grid incompletely) and it looks like even IE in its now new version 10 has dropped this full support. leaving only Firefox as a guaranteed correct handler of the grid. A new approach will need to be developed for this reason for subsequent new versions of ABCD. Again it can be stated that since database-creation and editing FDT's is not a daily activity, and only for System Administrators, this flaw should not be overrated and doesn't prevent the use of e.g. Chrome or IE for ABCD daily activities and end-user work.
[bookmark: d0e206]Note
For some features of the FDT to work correctly, the option 'allow pop-ups' for the current URL (e.g. 'localhost:9090) has to be activated since the menu's within grid-cells are technically build as pop-ups. After having activated this option - most browsers warn if this is not the case - one simply should re-load the page in order to see all elements correctly.

Having raised all this as an introduction, let's now consider the respective. elements of the FDT one by one, starting with the field characteristics sensu stricto and followed - in the discussion of the worksheets under here in no. 3. - by the worksheet characteristics for the given field.
In the illustration here we only show the left-hand part which actually deals with the real FDT-elements - all elements or columns to the right of this part deal with worksheet elements.
[bookmark: d0e216]Figure 4. ABCD FDT editing in a row

· [bookmark: d0e224][bookmark: d0e223]first column : the row number, which is also the (blue-colored) link to open the row in a full form
· [bookmark: d0e227]second column : field TYPE, being one of the following options :
· [bookmark: d0e231][bookmark: d0e230]Field : a normal field without any special features
· [bookmark: d0e235][bookmark: d0e234]Subfield : the row defines a subfield belonging to the previously defined Field
· [bookmark: d0e239][bookmark: d0e238]Fixed field : special fixed-structure field as used in MARC21 field 8
· [bookmark: d0e243][bookmark: d0e242]Date field : containing a MARC-date (v5)
· [bookmark: d0e247][bookmark: d0e246]MARC-leader field : a special field for the MARC-leader, see MARC references elsewhere
· [bookmark: d0e251][bookmark: d0e250]Group : a repeatable subfielded field - by far the most complex but also useful field for which we will give more details later on
· [bookmark: d0e255][bookmark: d0e254]Line : this option will only create a visible 'line' as a separator in worksheets based on this FDT
· [bookmark: d0e259][bookmark: d0e258]Heading : this option will only print the 'name' of the field as a heading subdividing the worksheet; collapsing/expanding sections of worksheets is based on these headings.
[bookmark: d0e262]Note
The list of fields is reduced as compared to earlier versions pre 1.2t. This 'incompatibility' is coped for by the software and by re-saving an old-style worksheet the necessary move to the 'data-entry' type of incompatible field-types will be automatically performed.
· [bookmark: d0e265]third column : the 'tag' of the field is the numerical identifier of the field, from 1 to max. 999 (higher values can be used for special internal and virtual fields, not explained here)
· [bookmark: d0e268]fourth column : the 'title' or 'name' of the field which clarifies the use of the field since the identifier is only a number; in ABCD one should keep the ID's constant for the different language versions of the FDT, while adapting the 'title' for each language is possible here
· [bookmark: d0e271]fifth column : the 'I'dentifier tick-box which denotes, only one for each database, the field to be used for the browsing lists (A-Z) in the Central module. This works together with the value of the prefix-column and 'List as' columns to construct the strings which will define the browsing lists
· [bookmark: d0e274]sixth column : the 'R'epeatable field tick-box which indicates whether the field is repeatable or not; this will e.g. automatically create repeatable groups when the field is included in an automatically generated PFT (see infra)
· [bookmark: d0e277]seventh column : pre-literals are mostly special characters (interpunction) like comma, semi-colon etc. which should be used to split incoming values into subfields. When the record is written, the pre-literals will be replaced by the subfield delimiters. This way the data-entry for fields with few subfields can be made easier, e.g. the name of an expert Name, Firstname will still be stored as Name^nFirstname or ^aName^nFirstname, depending on the data specified in this parameter for Subfields and Pre-literals.
2. [bookmark: d0e280]the Field Selection Table of FST for indexing instructions
Differently from other ISIS-versions, ABCD as being fully based on CISIS allows the use of more than one general index on a database. E.g. when defining the configuration for the OPAC (iAH) one parameter to be defined is the name of the index to be used, which often is just the default index with the name of the database (referred by the placeholder 'DATABASE' in the iAH-configuration). Therefore not only in theory but also in practice one can conceive different FST's for different purposes, e.g. one for detailed searches by catalogers/experts and another one with the popular search fields or even a virtual 'full-text' field for end-user searching. In reality ABCD offers already those options by providing a search grid for the catalogers in their own toolbar of the data-entry part of the software and one or two others for searching in the OPAC, but also preserving a 'Google'-like option of simple search with words across the records (the 'virtual' field idea referring to one prefix used for all selected 'full-text' fields).
But ABCD wouldn't be a real ISIS-member if it would not allow to do all this still with one overall FST, combining entries for advanced searching in one interface with simple-search entries in another interface ! Still one should consider, esp. in high-density multi-user cataloging environments, that creating such complicated indexes when saving a record becomes less trivial and in poorer server-environments (e.g. a PC) can lead to overloading the system. In such cases the solution is to provide a 'basic' real-time FST definition with fewer option (taking less load on the CPU and storage) with other FST(s) for batch indexing at quiet times (e.g. at overnight with auto-scheduled scripts).
In concreto, creating an FST requires understanding of each of the three 'columns' of the FST itself : the index identifier, the indexing technique and the extraction format. For all three elements one has to basically understand that in the case of indexing in ISIS this means creating 'entries' of a dictionary, listing all searchable elements extracted from the database with or without additional elements. In ISIS applications such dictionaries or listings can always be presented as a 'menu' to select search keys from.
a. [bookmark: d0e290][bookmark: d0e289]the indexing IDentifier
The FST ID is a numerical value identifying the 'origin' of the dictionary term. In most cases this is simply the field tag from where the value is extracted, but in two specific cases the identifier deviates from this idea for very good reasons :
· [bookmark: d0e296][bookmark: d0e295]if the term is constructed (by the format in the extraction column) from different fields, even from other database-values with the REF() function, the ID becomes an artificial or virtual field tag. It is best to use tags not present in the database to avoid confusion, e.g. '999' is often used for such purpose.
· [bookmark: d0e299]if one field is indexed more than once, with different techniques (2nd column), one can assign again a non-existant ID as a virtual one to distinguish the different entries. However mostly in ABCD the use of different 'prefixes' is preferred. E.g. a title field can be indexed as such (technique 1) with an identifier '245'(the MARC21 title-field tag) but also by each title-word separately, e.g. using an ID of '222'.
b. [bookmark: d0e302]the indexing technique
As in all ISIS implementations, and therefore described in all ISIS-related manuals, there are several different ways of 'extracting' values from (sub-)fields in the databases. We confine ourselves to a very short description here, leaving today rarely used techniques in between parentheses :
· [bookmark: d0e308][bookmark: d0e307]techniques 0 and 1 extract the whole field as-is up to the length of the inverted file keys, in ABCD this is currently 60 characters. The difference in between 0 and 1 is not that important : technique 1 'knows' the subfields and will create separate entries, technique 0 does not.
· [bookmark: d0e312][bookmark: d0e311]techniques 2 and 3 deal with 'marked' terms from the field values, the marks resp. being the slashes ' / ' and the brackets '<' and' '>'. Esp. these last needs caution since the WWW-technology of the HTML standards has introduced, long after ISIS was designed, these markers for their essential tag-marking. Luckily ISIS has a way of forced preserving the brackets or hiding them with the Formatting Language. In reality these techniques are not used anymore that much, also because the marking itself of words/terms in fields in itself represents a quite labor-intensive job and people prefer the 'cheap' full-text indexing, see next.
· [bookmark: d0e315]technique 4 : each word will individually be extracted from the (sub-)field and matched against a 'stopwords' list and if not in there retained into the dictionary for 'full-text' searching. Optionally - but specifically to be indicated by adding 'repeat' separators (e.g. '%' in case of the default repeat character in ISIS) - one can also count words and remember their position for 'proximity' searching, only selecting records where the two terms exist within a given distance of 'x' words, as known by their position in the field.
· [bookmark: d0e318]techniques 5-8 are in fact the same as 1-4 but WITH the use of 'prefixes'. Prefixes are short text-tags which are added in front of the extracted strings (therefore 'pre-'fix) with the effect of putting the term in a specific position of the alphabetically sorted dictionary, keeping all entries with the same prefix together. Without going into details here this can speed up retrieval processes a lot esp. in case of very large databases and Boolean combinations where after the intial selection of the hits the software still has to 'match' all entries for the Boolean condition or a field-specification. That condition or field-identifier can be anticipated by the use of a prefix, eliminating the need for a 'second round' in the selection process. Typical prefixes in ABCD are e.g. TI_, AU_, DE_ etc. for respectively titles, authors, descriptors.
[bookmark: d0e321]Note
In the ABCD iAH module the use of such 3-character strings as prefixes ending with underscore is mandatory.
c. [bookmark: d0e324]the extracting format
Simply put the extraction format, which will create a 'string' to be put into the dictionary as an entry, is a 'PFT' and therefore it uses all possibilties - and they are many, too many to discuss here - of the ISIS Formatting Language. In reality it can be anything from the simplest format, e.g. 'v1' (which will just take the value from field 1) to any construction of strings possible with the Formatting Language, including making references to other records and other databases. Since in most cases this format is kept simple and short, we will confine here by giving the most typical example : a field value built by subfields, prefixed for authors as expected in ABCD iAH with two-character-plus-underscore prefix and generated by method 5 :
'/AU_/', (v100^a/)
which has to be understood as follows :
· [bookmark: d0e335][bookmark: d0e334]first the prefix AU_ is both quoted with single quotes and embedded in between a delimiter, which can be any character not occurring inside the prefix-string itself, in our case the slash ' / '
· [bookmark: d0e340]a comma, separating the prefix definition and the actual extraction format
· [bookmark: d0e343]a repeatable group in between parentheses (and) to indicate that this extraction needs to be done for each occurrence of the author-field
· [bookmark: d0e346]the actual format 'v100^a'' which will extract only the subfield a part of field 100
· [bookmark: d0e349]the slash again, this time used as the Formatting Language 'repeat' command, in order to separate all author names as different entries in the vocabulary by putting each occurrence on a 'new line' - which is the official meaning of the slash / in the ISIS Formatting Language.
Note that if you want e.g. title words (prefix : TW_) indexed with position kept, the format would be : '/TW_/',(v245^a|%|)
Most of the FST-entries will look rather similar but applied to different field tags. Let's conclude, for fun (not really...!), by looking at one still-not-too-complicated example from the demo MARC21 FST with some more programming-like content :
902 0 mpu,(if iocc<100 then |PR_|v900^r|%|/ else break fi)
Here you can see the identifier 902 is assigned to elements coming from v900, technique 0 is used for simple field extraction, and this is applied to v900^r but only for the first 99 occurrences (iocc<100) of that field. The occurrences need to be counted indeed so the occurrence separator '%' is added after each repeat. As said before, it can get much more complicated with more programming logics, replacements, external database lookups etc.
3. [bookmark: d0e363]the worksheet or FMT descriptions
Worksheets are 'forms' (in HTML-coded format) which are automatically presented by the ABCD software each time information is to be gathered from the operator or user in order to act on it, like mostly cataloging does. In ABCD the worksheet description can appear at two instances :
· [bookmark: d0e369][bookmark: d0e368]as part, i.e. the right-hand part, of the FDT for each row (field) in the grid
· [bookmark: d0e372]as a dedicated, separate worksheet
The principle is as follows : in the FDT the 'default' data-entry characteristics of the fields are defined, whereas specific additional (non-default) worksheets can be defined at all times, containing subsets or all fields again, in the same or different sequences, but possibly with different characteristics. E.g a field which is presented as a table-based picklist by default, can be presented in another worksheet as a simple text-area box for direct editing. A new feature (as from v1.2t) is that when the administrator wants changes in a worksheet to be reflected in the FDT, a new last column allows 'linking to the FDT' for the field concerned.
In both cases, whether in the FDT or in a FMT, the presentation of the 'rows' with all elements is the same, as is the way of dealing with the elements : double-click to activate a cell and edit. By clicking on the blue number in the first cell of each line, the line will be presented in a separate 'vertical' form presenting the same row-elements (columns) in a form for more detailed editing if so desired. We show both formats here as illustration.
[bookmark: d0e379]Figure 5. Worksheet row editing presentation

When clicking on the far-left blue-coloured '1' the same row will be presented in a form as illustrated here :
[bookmark: d0e389]Figure 6. Worksheet row-as-a-form editing presentation

If preferred one can do all editing work in this form and click on 'Update' to bring the data into the normal grid.
The elements themselves are explained further on when presenting the actual possibilities of 'Editing/Updating database definitions'.
4. [bookmark: d0e401]the print formats or PFT definitions
Following a 'law of documentary systems' which reiterates a well known political science law : the 'separation of the main three powers', ISIS and ABCD separate carefully the three main aspects of raw data input, the internal processing (indexing, formatting..) and the output. Unless a special built-in 'raw' display format, outputting records as they are without any processing, all output will be based on 'print formats'. Output in this context is to be seen as regardless to which 'device' : whether the screen (the real 'display'), a file on a storage device, a printer or another process (e.g. sorting, indexing, exporting), ISIS and ABCD will always 'mould' the output according to rather specific instructions as scripted in the Print Format Table or PFT's. A full 'language' has been developed to this end : the ISIS Formatting Language. The CISIS-Formatting Language, published separately, in its own right contains more than 40 pages, so we won't repeat the detailed discussion of this language with its commands and functions here.
Basically the PFT contains instruction on what and how to display. Displayed elements can have two origins :
· [bookmark: d0e409][bookmark: d0e408]taken from a (sub-)field of a record in an ISIS-database, therefore the 'V'alue of a field with a given tag, e.g. V1 is the value of field with tag 1.
· [bookmark: d0e415]defined by the PFT itself as a 'literal' (a string defined in the script itself) either as straightforward 'quotes', e.g. the word 'Title : ' before displaying an actual title, or as programmed strings, e.g. numbers of items in a looped list. In ABCD as a WWW-based software, the most used literals are actually HTML-tags : by quoting opening tags before and closing tags after a field value, the field value becomes an HTML element, e.g. '<td>'v1'</td>' will produce the same value of field with tag 1 inside a 'table-data' HTML-table, or as an example of the PFT defining 'how' to display : ''v1'' will display the value of field 1 in Bold Face.
Especially in the Windows version of ISIS (WinISIS) many graphical attributes were added to the PFT language, e.g. defining colors, fonts, margins etc., but in ABCD these are replaced by WWW-equivalents as HTML-tags to be literally quoted.
Actual ISIS PFT's are seemingly quite complicated concatenations of many such elements, each one in itself rather simple to understand as they are produced by a limited list of commands. With some efforts also non-computer experts can learn the language very well, as proven by so many marvellous PFT's developed by librarians all over the world.
The good news is that ABCD doesn't even require the librarians to make this effort as it generates PFT's according to some few pre-defined styles applied to a selected and ordered list of fields defined by the operator.
The PFT-Editor has 4 parts :

Use an existing format : a list of existing PFT's will be available to select from. It can be also deleted or uploaded from an external file if not yet available. The format then will be presented with an editor to make changes into it.

In reality the ABCD-operator has to run, for creating a new PFT, through 4 relatively simple steps :
a. [bookmark: d0e457][bookmark: d0e456]selecting the fields to be displayed
In case an existing worksheet needs to be edited, it can be selected (in the upper part of the interface) from a list - where possibly also an existing worksheet can be deleted is so desired. The main part of the worksheet presents the list of available fields with possibility to copy any field () or all fields () to the worksheet list at the right side.
As was already the case in WinISIS, available fields are listed at the left hand and 'moved' to the right-hand panel either all together (with the 'double' arrow) or the one or more selected entries. Their sequence can then be adjusted by moving them up or down.

b. [bookmark: d0e474]defining the general display style
The ABCD PFT-wizard offers either a general 'table-based' display (with field names and values in separate columns) or 'paragraph' (no columns) display, with or without field names. Immediately ABCD will generate the full PFT needed to display the fields selected in step 1.
A special option here is to output the selected fields as 'delimited' data (separated by the ISIS-default pipe separator '|') for re-use in other software such as spreadsheets or statistical tools.
When columns have been produced, the headers for the columns can be specified by putting them one by one each time in a new line in the dedicated box.
c. [bookmark: d0e483](optional) Generate output : this is mostly for testing purposes, where one can send the output produced by the PFT to either a word-processor (as default in the operating system), a spreadsheet software, to the screen itself ('preview') and as a text-file without formatting.
As mentioned and shown above, generating output to test the PFT can be one of three pre-defined standard ways of presenting data from your database : either a 'table-formatted' web-page (in colums) or 'paragraph-formatted' webpage (no columns), or - alternatively for quite different purposes - a delimited format for export to other software. ABCD will immediately generate the necessary code, combining HTML-tags as quoted 'literals' with values from the fields (Vx).

In case a 'column'-based format ('delimited' will allow export to softwares such as spreadsheets and statistical analysis tools) is selected, in the right square the (sequende of the) headers of the columns can be defined, by default they will be the field-names already defined.

This format then can indeed be 'tested' immediately on either a range or records or a selection defined by a search-statement.

This will result, when 'previewed' within the interface as opposed to 'sent to a document or worksheet' (this last option is ideal when outputting data as 'delimited'), into a display format like the following :

[bookmark: d0e518]Note
In this example subfield codes are still visible, but with simply adding a 'mode' statement like 'mhl' into the format ISIS will hide them.
d. [bookmark: d0e521]saving the format under a specific name
Finally the generated PFT should be saved with a real file-name (default is the database-name) and a 'description', which is the name of the format as displayed.

[bookmark: d0e532]Note
Remember that PFT's are saved separately for each language in the 'pfts' subfolder of the database-folder, as a text-file with extension '.PFT'
[bookmark: d0e535]1.2.1.3. The actual process of creating a database
After having discussed the principles of ISIS database structures and the way ABCD implemented them, we can now proceed with the actual process of creating a database.
[bookmark: d0e540]Important
General advice on the creation of a new ABCD-database : since 'validation' (e.g. about the bases-folder to be correctly accessible by ABCD to create new folders and files) is or can only be performed at the end of the database-creation sequence, described above, only after having run through all these steps the software can report on success or not. If no success - in case of an error - all steps have to be repeated all over again, as mostly nothing could be saved. Therefore we strongly recommend to always confine the creation process to a very basic structure, even with only one single field in the FDT, FST and PFT, and then immediately to create the database, check for errors in the listing and after successful creation of the base-structure to continue elaborating it by adding more fields, refining the display formats and indexing etc.
1. [bookmark: d0e544][bookmark: d0e543]From the main Central menu, select the option 'Create database' to get the initial database-creation screen :
[bookmark: d0e551]Figure 7. Database creation initial screen

As can be seen from the screenshot, three things have to be defined :
a. [bookmark: d0e561][bookmark: d0e560]the database name, which is a short name to be used as the internal name of the database; based on this ABCD will create a lot of (sub-)folders in the database main folder and files in there
b. [bookmark: d0e564]Description : this is the name of the database as will be shown on screen, e.g. in the list of available databases
c. [bookmark: d0e567]Create from : this can be either (as selected here) a 'new database', an existing WinISIS database (see infra) or a copy of one of the available ABCD-databases.
2. [bookmark: d0e570]The initial FDT
After filling in the three elements above, the next screen is quite complicated as it avails the full FDT-editor, which will be discussed later. Here we suffice to create one simple field in the first row of the table (grid), which itself can be changed later on and complemented by (a lot) more fields later on.
[bookmark: d0e575]Figure 8. FDT for database creation

Under the grid a menu (explained later) allows to 'update' the FDT and proceed to the next stage :
[bookmark: d0e584]Figure 9. FDT-editor menu

3. [bookmark: d0e591]The initial FST
This next step is about creating the indexing definition or 'Field Selection Table'. The FST editor always shows the actual table to the left hand of the screen, with a viewer of the available fields for indexing (taken from the FDt) at the right hand side. Again for the initial creation of a database, it is sufficient to add just one single line, almost like a dummy since the real design of the index can be done at any later stage.
[bookmark: d0e596]Figure 10. FST for database creation

These three columns have been explained in more details elsewhere, we keep it as simple as possible here. There is only one closing option here : update the FST to proceed to the last step.
4. [bookmark: d0e605]The initial PFT
The final step for database creation involves creating a (again : very simple) PFT, by selecting the one available field in the list, chosing one of the available styles, skipping the 'generate output' (since no testing still is necessary here) part and actually creating the database. This includes saving this PFT as the default PFT, i.e. with the internal name of the database itself.
[bookmark: d0e610]Figure 11. PFT for database creation

As can be seen in the screenshot, the one-and-only available field was moved from the left to the right side to include it into the PFT, the 'Table' laout was chosen and ABCD has created immediately the necessary PFT-code for this layout, which involves mainly the HTML-table formatting in fact. The link at the bottom then results in all folders and files for the new database being written to the harddisk (in the ABCD-bases folder as defined by config.sys of the Central module). A list of files written is shown, if all went well (and we minimized risks...) there won't be errors in red color, just confirmations of the process having been successful and some instructions to proceed, e.g. to make the database also available for non-administrator profiles (otherwise only administrators can use the database). Also the new database has been added at the end of the list of available databases for opening it.
[bookmark: d0e619]Figure 12. Database creation final confirmation

The new database has now been created, i.e. in the bases-folder a new folder (in this case with name 'mydb') with subfolders and all necessary files have been written.
[bookmark: d0e628]Figure 13. New database folder created

[bookmark: d0e635]Note
New from v1.2t on : this database creation process also creates a new folder in the htdocs/bases folder to make sure there is a writable folder for uploading files related to this database. Using the new mechanism for uploads (see infra) however this folder can be moved to other locations.
[bookmark: d0e638]1.2.2. Copying an existing WinISIS database
For creating an ABCD-database from your existing WinISIS database, here are the steps to be followed :
1. [bookmark: d0e644][bookmark: d0e643]Export your existing records into an ISO-export file using WinISIS (or another ISIS-tool allowing ISO-export); remember where you have saved this .ISO export file, normally it will reside in the WORK-folder of your WinISIS installation. No specific parameters need to be set, unless of course you would only want to use a subset of the records in that database (by using MFN-range minimum and maximum or a search result) or you need to 'convert' (reformat) the records before entering them into ABCD by the use of a 'reformatting FST'.
2. [bookmark: d0e647]Assign in ABCD, after having selected the 'Import from WinISIS' option, a name and a description - as with a new database, see supra. Then select your WinISIS database using the list in the 'Create from' part of the dialog.
3. [bookmark: d0e650]Select the FDT belonging to that database and click on 'Upload' in order to have the FDT loaded into the ABCD environment of the new database.
4. [bookmark: d0e653]Select the FST belonging to that database and click on 'Upload' in order to have the FST loaded into the ABCD environment of the new database.
5. [bookmark: d0e656]Select the PFT belonging to that database and click on 'Upload' in order to have the PFT loaded into the ABCD environment of the new database.
[bookmark: d0e659]Warning
Most WinISIS databases use a default PFT (with the name of the database) which contains typical Windows (as opposed to HTML) codes, such as e.g. 'BOX', 'FS' etc. These will result in a 'grammatical' error when later opening this in ABCD, so it is better to avoid this by selecting a PFT without such typical Windows-elements ! If not available, remember to re-create a HTML-based format within ABCD to replace the default PFT for your new database.
6. [bookmark: d0e662]Click on the 'Create Database' option in order for ABCD to start writing the necessary folders and files for your new database. A message about successful creation (or not, in case of problems) will be displayed on your screen. Also you will be reminded of the fact that without assigning this database as accessible to at least one user, you won't be able to use this database.
7. [bookmark: d0e665]Now you can open the new database, as it has become part of the list, in the main database management window.
8. [bookmark: d0e668]As the database can be opened but with 0 records, the first thing to do is to import the ISO-records created in the first step of this series. To this end, click on the 'Utils' icon in the main toolbar of this data-entry screen (as described in the section dedicated to this) and select the option 'ISO import'. This procedure further, as can be expected, involves the selection of the source ISO-file, which then should be 'uploaded'.
9. [bookmark: d0e671]Now, a bit strange, the ISO-file is ready for being effectively imported into the database. For this, click on the 'Utils' icon again in the toolbar and select 'ISO-import', where now the uploaded ISO-file is available for effectively importing (converting) into your ABCD-database. The software will now ask you if it is o.k. to indeed start importing the ISO-records from the selected file. The list of imported records will be shown on your screen to monitor its progress and success.
10. [bookmark: d0e674]If your newly imported records don't immediately show up in the database, re-open the database from the main menu, this will refresh the database parameters.
11. [bookmark: d0e677]Now the records should be visible and editable as normal records, only they have not yet been indexed into the Inverted File, so use the option 'Inverted File' update in the 'Other utils' section of the 'Utils' screen.
[bookmark: d0e680]Warning
If your imported series of records is quite large (e.g. above a few hundreds), it is possible, depending on the system you are working on, that the process will be too long for the web-server (Apache in most cases) and it won't be allowed to finish. For this reason it will be necessary in such cases to perform the Inverted File generation action not from ABCD (as a web-environment) but directly from the command-line, using the dedicated CISIS-tools (for which another section of this manual will give the details).
For the somehow more cumbersome procedure of importing ISO-records, mostly by batches because of the slow processing through the http-protocol and PHP-timeouts, there will be an alternative option in version 2.0 which creates a call to the Operating System and loads the ISO-records in a much faster one-run command using CISIS directly.
[bookmark: d0e687]1.2.3. Copying an existing ABCD database
This last option is the easiest to perform, as only a new name and description need to be entered, after which ABCD will simply re-produce all necessary files into a new folder structure for the new database. The source databases from which you can choose are the ones listed in the database-menu, in other words : the database descriptions listed in the file 'bases.dat' in the ABCD bases-folder.
The system will simply - as above - list all files copied and created in their proper folder-structure and that is it ! An empty database, as a copy of the existing ABCD-database but with new name and description, will be available for normal use.
[bookmark: d0e694]1.3. Update database definitions
From this option it is possible to edit all existing 'structures' or definition tables related to a database in ABCD. In comparison with 'normal' ISIS-databases, and in order to support some more advanced features in ABCD, there are some more of such database definition elements, as can be seen from the following 'database definitions' menu :

In fact only the first four tables are used in other ISIS-environments : the Field Definition Table (FDT), the Field Select Table (FST), the FMT or edit-worksheet and the Print Format Table or PFT. Since we needed these also in order to create a 'new' database in ABCD, they were discussed in the according section above, the only difference being that instead of an empty table a pre-filled table with the already existing definitions will be presented by ABCD.
Let us deal with the definitions for ABCD-databases now in more details.
[bookmark: d0e709]1.3.1. Field definitions and worksheets
Earlier on in this manual, we already dealt with the basic elements of the FDT to define a 'repository' of possibly-used fields in the ABCD-database. We also noted that the definition of the worksheets is closely linked to the FDT (unlike in other ISIS applications) and defined fields can be presented in different ways from the default one as given in the FDT by using additional worksheets.
The FDT-editor screen is probably the most complicated one of ABCD, as it presents not only the FDT proper, but also defines the worksheet for data-entry (or cataloging), unlike in other ISIS-softwares where a separate but simple 'FMT' (data entry worksheet) is defined, and since in addition ABCD uses quite some more advanced data-entry features such as picklists and validations, this step is rather demanding.
[bookmark: d0e716]Since version 1.0 of ABCD two interfaces are provided for editing the FDT : one 'full' and one (marked in red for the time being) 'abbreviated'. The abbreviated form will not show the subfields unless the field itself is selected by its link in the first column - they will then appear in the subsequent form where all the details of the subfields can be edited, e.g. the width of the columns as 'no. of columns' in case the subfields are to be presented in a table rather than separate entry-fields (which is the default type of entry : Text/Textarea). This abbreviated FDT-editor is quite practical - and faster - in case of large complicated (i.e. using many subfields) structures such as MARC. For other, simpler structures the full FDT-editor can be used.
In the case the full FDT-editor is selected, or when in the abbreviated editor a field is presented in a detailed format, the link at the first column can be used to show the field in a 'vertical' detailed way, so presenting just the selected field in a normal form. This then again is more practical to deal with the individual elements to be defined.
[bookmark: d0e721]Tip
In order to 'edit' the form, double-click inside a cell of the table ! Simple-clicking will only select the row but not make the cell editable or invoke the menu attached to the cell.
We will now discuss some more advanced possibilities to be used when designing worksheets to illustrate the power of ABCD. Remember ABCD can be used for almost any type of ('mostly textual') information and is not confined to bibliographical or library records. In fact at the occasions of ABCD-workshops and courses we have seen students creating information management systems on the Olympic Games, their family genealogy, personal interest WWW-inventories, personal music collections, pet-collections etc. whereas ISIS always has been used also in quite strict scientific environments for vocabulary control, thesauri, experts and knowledge bases, species databases...
In v1.2t new features, allowing more sophisticated data-entry forms, have been introduced. We will also present them here.
[bookmark: d0e728]1.3.1.1. field types
In v1.2t the list of possible field types has been simplified and options have been shifted to the input type column. E.g. the 'auto-increment' field type is now a normal field but with 'auto-increment' as its secondary characteristic in the 'input types' column.
Except for two simple 'separator' options to sub-divide the FDT presentations (line and header), at the bottom of the list (not shown) we have the following field types :
[bookmark: d0e735]Figure 14. Field types

· [bookmark: d0e743][bookmark: d0e742]Field : any field which is not a special MARC-type field, fixed, a date or a field-with-subfields ('group') is a normal field. So this will be used for most fields in reality.
· [bookmark: d0e746]Subfields : whenever a 'group' has been declared, in the subsequents rows of the FDT the subfields of that group need to be defined and declared to be of the 'subfield' type
· [bookmark: d0e749]Fixed field : this is a field with a fixed structure which can be presented with its structural parts separated; the MARC field 008 is a typical example, e.g. the first 6 positions need to contain the date (yymmdd), at specific positions near the end the language code has to be given etc.
· [bookmark: d0e752]Date : a special date-field for field 5 of MARC can be used with this type; it will be automatically present in the worksheet with a detailed date-and-time stamp format :
· [bookmark: d0e758]MARC-Leader : this is the special MARC field meant to contain specific information on the record (see the MARC manuals)
· [bookmark: d0e761]Group : a field subdivided in subfields. This is a very important 'structured field' since it can contain a lot of separate information units grouped together in one field : it is like a 'record in a record'. Simple examples are e.g. author names (with substructures like name, firstname, role, date of birth, date of death...) or addresses (building/housenumber, street, municipality, ZIP-code, country, phone/fax-numbers, e-mail addresses...), but the more complicated example we will be using here comes from a real-world scientific database to manage information published on a certain animal species.
[bookmark: d0e764]Figure 15. Group field example

As can be seen here, this field will contain details about the distribution of the species described in the literature to keep track of exactly where the studied exemplar was found. The interesting part follows later when for each of these subfields different 'data-entry input types and parameters will be defined.
Since the next FDT or FMT columns (tag, title, browsing Identifier, Repeatable, subfields and pre-literals) don't need further explanation on top of what is already discussed earlier on, we skip to the next interesting column for further detailed explanations.
[bookmark: d0e775]Note
ABCD, unlike WinISIS and other ISIS-variants, allows creation of FDT for each language used, so field titles can be language-dependent !
At the end of the table options are provided to save the table, but also to test and validate it

Here the 'Test' and 'Validate' options will resp. display the resulting form for getting an idea about the result - interestingly this is an 'interactive' display so it can be really tested ! - and display the table in a different window with a message indicating wether any logical or grammatical errors are present in the table. It goes without saying that such errors need to be corrected first before 'saving' or 'updating' the FDT with the last option presented here.
The 'List' option provides a listing of the table in a separate window, e.g. allowing printing it or saving it as a separate file.
[bookmark: d0e790]1.3.1.2. Input types
In v1.2t the following input types, which are mostly HTML-form elements but also some extra special ABCD-types (to which in v2.0 will be added for the digital library feature : DOC and URL), are available (in the list the options are alphabetically sorted) :
[bookmark: d0e795]Table 1. ABCD input types

	
	(continued)
	(continued)
	(continued)

First we briefly mention the 'standard' HTML form elements which don't need much additional explanation as they are well-known or simple to understand.
· [bookmark: d0e821][bookmark: d0e820]checkbox : a simple small box to 'tick' in order to make this active (1) or not (0), e.g. to denote whether a record is active (1) or not (0) in the database
· [bookmark: d0e827]radio : several round buttons of which only one can be selected as alternating possibilities
· [bookmark: d0e830]external HTML : an html-file available on the system will be referenced by a blue hyperlink and automatically loaded into the record [??]
· [bookmark: d0e833]hyperlink : the value entered here should be a URL as it will be formatted as a hyperlink
· [bookmark: d0e836]simple select : a list of options as in a menu, of which only one can be selected
· [bookmark: d0e839]multiple select : a list of options as in a menu, of which one or more can be selected (with shift-click and ctrl-click for selecting subsequent or not more entries)
· [bookmark: d0e842]password : typed characters will be hidden by asterixes
· [bookmark: d0e845]text area : this is the standard, default one-line empty box in which text can be typed; width and height can be defined/changed by specifying the number of rows and positions resp. in the columns 'rows' and 'cols' in the FDT
In addition to these more or less standard elements, ABCD is adding the following input types for specific purposes :
· [bookmark: d0e851][bookmark: d0e850]HTML Area : a larger editing window with accompanying HTML-editor toolbox will be shown to allow editing of full HTML-encoded documents :
Needless to say this HTML-editing control (loaned from the rich PHP-library of controls) adds a lot of power and can make records quite attractive since most HTML-attributes are available here. One can also switch in between the source-code (the HTML-tags) and the 'WYSIWYG' result. For educational purposes this feature even allows ABCD to be used to teach/learn HTML !
· [bookmark: d0e859]operator : the username of the logged-in operator will be automatically entered in this field
· [bookmark: d0e862]operator and date : both the operator's username and date of saving the record will be stored, as illustrated here :
· [bookmark: d0e868]read-only : the value given (as default) cannot be edited
· [bookmark: d0e871]text fixed-length : a text with maximum length as specified in the column 'cols'
[bookmark: d0e874]Note
If in addition to this max. length another value preceded by a slash is given, ABCD will show a counter for remaining characters, e.g. the value '50/200' in the cols column means that a box of 50 characters width is shown and the maximum number of 200 characters will be counted down.
· [bookmark: d0e877]date : a field in which the operator can easily put a date using a calendar tool (as shown by the icon) :
· [bookmark: d0e883]ISO date : a date field entered with the calendar tool but automatically formatted into the ISO format YYYYMMDD :
· [bookmark: d0e889]date (created) : a field in which the software will automatically add the current date/time-stamp, e.g. :
· [bookmark: d0e895]upload file : ABCD will present next to the input box an icon to open a browser to folders from where a file can be selected to be uploaded into the server's domain and a link will be generated to open the related file :
· [bookmark: d0e901]auto-increment : the software will assign the next available numerical identifier automatically, based on the last stored value in the file 'control_number.cn' (in the data-subfolder of the database); overruling this mechanism is allowed by clicking on the 'assign'-link, which then means the operator takes full control but also responsibility about the number being and remaining unique for that database (!)
· [bookmark: d0e904]hidden : the field can be entered but won't be shown
· [bookmark: d0e907]table : ABCD will present input elements as cells of a table, each with their own attributes, making possible some quite sophisticated input worksheets. This needs some more explanation, given immediately here.
[bookmark: d0e910]Note
This 'table' is quite different from the 'table' option in the picklists of the FDT, where a table is just a list of options or a menu in fact.
Let's first give a not-too-complicated example : a table with only two parts (or columns) : we want to take two subfields of a 'group' into one table, one is taken from a menu (indeed : a table picklist inside a table input-type...), the second one is a normal text field :
In this example the 'source or base' subfield is defined as a picklist in the first column of the table, the 'search strategy' subfield is a normal textarea in the 2nd column.
Note two more options (both new from v1.2t on) :
· [bookmark: d0e923][bookmark: d0e922]the 'plus' sign with 'refresh' icon near the picklist : clicking on the plus - which will only be shown to administrator operators - allows the actual list of values for the picklist to be edited on the spot, while 'refreshing' will immediately show the newly edited list in the worksheet
· [bookmark: d0e930]the 'Add' blue hyperlink will allow to add a new occurrence to this repeatable group, duplicating all elements of the previous row of the table to take new values
Next we show the group used earlier on as an example of a subfielded group with more subfields. Here one additional feature is illustrated, i.e. the use of a fixed field with character counter.

In the third column here ('specific location') a counter is added, counting down from 200 available characters.
This table was defined in the FDT, in the part 'data entry' as shown here:
As can be seen, for the third column (specific location) 2 rows were defined, presenting a box of width 30 (raising this number will make it wider) and a counter going down from 200 maximum allowed characters. For other subfields specific tables were created and named here as to provide picklists when editing that column. These picklists can be edited-in-loco by administrators (as shown by the plus-sign) and the newly edited list can be refreshed.
[bookmark: d0e948]1.3.1.3. Rows and columns
Rows and columns as part of the ABCD-FDT and FMT (worksheet) definitions can have different meanings according to which context they are used in. Generally rows define the ' height' or vertical dimension of the input element, e.g. the number of lines in a box to be shown. The columns define the 'width' or horizontal dimension, e.g. number of characters in a text-box or number of columns in a table (= the number of subfields of a group to show in the table).
As already seen above, the cols-value can be given as x/y, where x is the width value and /200 means creating a counter from 200 down.
[bookmark: d0e955]1.3.1.4. Picklists definition
The next section in the FDT's or FMT's is the section which defines the use and type of picklists. The following parameters need to be addressed :
· [bookmark: d0e961][bookmark: d0e960]type of picklist, which is either :
· [bookmark: d0e965][bookmark: d0e964]DB : a database (the same or an external one) from which the dictionary (inverted file or index) will be used to build the picklist
· [bookmark: d0e968]thesaurus : a database with specific thesaurus structure from which the picklist will be built
· [bookmark: d0e971]table : a simple list of values - one per line - which serve the options of the picklist; this table has to be built manually for the purpose
[bookmark: d0e974]Note
At the time of creation of a database, since the path to the new database is not yet created, no table (which needs to reside inside that path) can be referred to, so this option is not available at the stage of database creation; after creation of the database however one can return to this worksheet element to select and define the table normally
· [bookmark: d0e977]name of the picklist : name of the DB or thesaurus, or path and name of the file containing the table-values; when using the 'browse' link in this worksheet section to create or edit a table, the path/name will be automatically added
· [bookmark: d0e980]prefix : in case the picklist is built from an Inverted File (or index), since ABCD prefers to group entries there by prefixes, give the prefix here; e.g. to provide a list of publisher-names which have been included into the index with prefix 'PU_', enter 'PU_' here to only show that part of the dictionary
· [bookmark: d0e983]browse : this is a link which opens a new window where the picklist table can be created, edited or deleted and saved :
All ABCD-tables have 2 (or more) columns which are text-values separated by the pipe '| '; the first column is the 'code' to be stored into the record, the second one is the description used to list the code in the table; e.g. to enter a user-category 'academic staff' one could put the following entry in the table : ac|Academic Staff
After the FDT, FST and FMT for the database has been defined, the last step involves to produce the default display format for the database, i.e. the PFT which will be stored with the name of the database itself. The procedure is the same as what will be used later on for creating additional display formats, i.e. in three steps :
· [bookmark: d0e995]list as : the (optional) ISIS-PFT which defines how to create the entries in the list, if different from the value-as-is in the dictionary, e.g. for a subfielded field one can extract here only one subfield for listing the entries, or change their sequence etc.
This display format (or 'List as' format) denotes the PFT which defines how the values in the list will be displayed with the Formatting Language. Here either an 'inline' PFT can be given, e.g. a simple one like 'v11', or a reference to an external format can be given as '@myformat.pft'. This external format has to be written following a pre-defined pattern in order to be correctly interpreted.
See the example here used for the authority files of the MARC database : @autoridades.pft:
select e3
case 1: v1
case 100: v100^a,`$$$`v100^a
case 110: v110^a,`$$$`v110
case 111: v111^a,`$$$`v111
case 245: v245^a,`$$$`f(mfn,1,0)
case 260: v260^a," : "v260^b
case 270: v270
case 340: v340
...
endsel
[bookmark: d0e1032]Note
In case the PFT contains pipes (|) it CAN NOT be put inline into the FDT but has to be put in an external PFT referred to from this cell (this is because the pipes are also used as separators for the column values of the FDT table as stored in ASCII-format).
· [bookmark: d0e1035]extract as : the (optional) ISIS-PFT which will re-format the selected entry before actually storing it into the field, e.g. if a name was 'listed as' Name, Firstname one can still store the value ^bFirstname^aName by putting here '^b'v1^b,'^a'v1^a
The format defines, again with the Formatting Language, how the contents of the field needs to be exactly extracted from the field values in the record to which the entry in the list (as an Inverted File posting) points. If this value is omitted, the values will be kept in the format defined as 'list as format' in the previous column. If the display format is a pre-defined format (@xxxx) and follows the instruction to separate the display format from the extraction format by $$$, this part should be left empty.
[bookmark: d0e1045]1.3.1.5. Additional elements for fields in FDT and FMT
At the far right side of the grids for FDT and FMT we find some remaining additional elements, which are easy to understand and are just briefly mentioned here.
· [bookmark: d0e1051][bookmark: d0e1050]default value : a text which will be available automatically when opening the worksheet for that field
· [bookmark: d0e1054]help : a tick-box indicating whether or not a help-file is available for this field which the operator can open from the worksheet; the help-pages are stored in the folder bases/dbn/ayudas, where dbn represents the name of the database.
· [bookmark: d0e1063]help URL : the link to the actual help-text (as HTML-page) for this field
· [bookmark: d0e1066]link FDT : this new element (as from version 1.2t) means that, if ticked, changes for this field in the FDT (except deleted/added fields) will be also adjusted in the worksheets to remain consistent; there are many cases however where one doesn't want this, e.g. to create alternative worksheets where a field is presented in a different way from the default one as defined in the FDT. E.g. a 'read-only' or even hidden field could be included into a special worksheet with normal editable properties.
[bookmark: d0e1069]1.3.2. Indexing mechanisms
Indexing mechanisms in ABCD are defined through the ISIS Field Selection Table, discussed above. Such index definitions can vary from very straightforward instructions like 'just put the field in the index' (with a simple statement like 'v1') to quite complicated instructions, typical for ISIS applications, which however follow closely librarian's logics, like e.g. 'if the record is about a book, then do this, if it is instead an article, do that'. Such instructions can be written in logical routing instructions which are close to normal human language - mostly preferred by non-technical librarians with statements like 'IF (condition x) THEN (do this) ELSE (do that) FI - or if preferred, more advanced programming logics like 'check a value over a list of possibilities and perform the action listed next to that possibility if there is a match', which is indeed the logics of a 'SELECT CASE.... ENDCASE' construction. Even real programming constructs with e.g. a 'local counter variable' can be used in 'WHILE (i>=0) {....}' loops.
Let's deal with some specific indexing tricks here, bypassing the 'normal' formats for extracting (simple) values to be indexed.
As the Formatting Language (ISIS' most powerful feature) can be used here in its full power (without the graphical presentation features, as this is not for display but indexing purposes), values can be processed before they enter the dictionary, e.g. 'N:', f(mfn,1,0) produces the recordnumber or MFN, formatted (f) as a string, but more complicated examples can be given, e.g. .
· [bookmark: d0e1079][bookmark: d0e1078]a combination of several fields or subfields with added punctuation
· [bookmark: d0e1082]formats using the REF-function to refer to external databases to take values from there after locating the MFN with the L-function - doing so e.g. codes can be converted into values for the dictionary (see the example above)
After having edited the FST, it can be tested with any record of your database to check whether the actual values which will be indexed indeed comply with what was intended.

·
[bookmark: d0e1099]1.3.2.1. Indexing substituting codes for values
For consistency or multi-linguality reasons sometimes we prefer to store codes into the databases, rather than the more user-friendly textual equivalents of these. Using a 'referring' technique of ISIS however we can actually put the equivalents in the index vocabulary for easier searching, either taken from the same or from another database. In this last case ABCD behaves a bit, like ISIS can do, like a 'run-time' relational system : taking values from another 'table' (or in our case 'database' which acts as a table).
E.g. suppose we want to index the month of some field-value (given in two positions, in this example as substring of 2 positions starting on position 4 of v65) in a more user-friendly way as (abbreviated) month-name, one could use the following instructions :
select s(v65*4.2)
case '01': ,'Jan',
case '02': ,'Feb',
case '03': ,'Mar',
case '04': ,'Apr',
case '05': ,'May',
case '06': ,'June',
case '07': ,'July',
case '08': ,'Aug',
case '09': ,'Sept',
case '10': ,'Oct',
case '11': ,'Nov',
case '12': ,'Dec',
endsel
Another example illustrates the use of 'referencing' values from another database, using the combination of the REF() function with the L() function. This function in ISIS 'REF'ers to another named database and takes values, with a PFT, from records there. In order to know which record to open for extraction values from, the L() function 'L'ooks up the MFN of a search key, which is the first hit in the Inverted File linked to the 'search key' passed with the function. An example :
Suppose our database uses sections based on the main category of a classification (Dewey, LC, UDC...) for each record. If that classification code is taken from the first 3 positions of e.g. v80^a, that would mean : v80^a*0.3 . This is what we have in the database, but we want users to be allowed to search for e.g. 'forestry', with code 630. This can be reached by putting the following statement in your FST, supposing you have a list of such main codes (in v1) and their 'translations' in subjects (in v2) in an ABCD-database, let's say 'CLASSCODES :
REF(['CLASSCODES'] L['CLASSCODES'](v80^a*0.3), v2)
as this instruction would tell ABCD to extract v2 (the translation) of the MFN found when 'L'ooking up the first three characters of v80 (the classification code) in the 'REF'erred database CLASSCODES. Please check the exact grammar carefully as it is not obvious : e.g.the first time we refer to the database 'CLASSCODES', the second time to the Inverted File with that name. Both names need to be quoted inside square brackets. Now users can search for the search key 'forestry' even in your database there are only entries with the value '630' as the first 3 characters of a (sub-)field...
With such instructions in the 3rd 'extraction format' column of the FST, the index will contain month names, making them searchable by name, or main classification categories worded as a subject. This way there are hundreds of possibilities to include sophisticated mechanisms in your search options : after all what we do in preparing the FST is to prepare options for the users searching our databases.
[bookmark: d0e1149]1.3.2.2. Indexing numerical values from text fields and changing upper-case translation
Indexing techniques 4 or 8 (without or with prefixes) deal with 'full-text' indexing, i.e. each word is taken as such and put into the dictionary. A word is defined as a chain of alphabetical characters, so strings like 2013 (a year) or '1st conference' won't be indexed as expected. Here is how to solve this issue.
In ISIS whatever is to be considered as 'alphabetical' values is defined in a table 'ISISAC.TAB' (AC=alphabetical characters). In the default ISISAC.TAB (stored in ABCD in the main bases folder, but as always references in .par - including now also SYSPAR.PAR - can re-define the path), numerical ASCII-values such as dates (years) are not included, so they are not recognized as 'words' to be indexed. If one needs to do so however this ISISAC-table needs to be edited. Such editing is NOT an ABCD interface function and needs to be done within the OS itself.
Here is the list of alphabetical characters with added (in front) numerical values 048-057 (the numericals 0 - 9) :
048 049 050 051 052 053 054 055 056 057 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 192 193 194 195 196 197 199 200 201 202 203 204 205 206 207 209 210 211 212 213 214 216 217 218 219 220 221 224 225 226 227 228 229 231 232 233 234 235 236 237 238 239 241 242 243 244 245 246 248 249 250 251 252 253 255
E.g. omitted is the range 091-097 for characters such as [, } and /.
By adding the values 048 - 057 to the table, and re-indexing your database (don't forget to use 'mpl' in the extraction format), you will then get the numerical strings as well in the dictionary, making them searchable.
In the same way, by manually editing another table 'ISISUC.TAB' one can change the way how ISIS/ABCD transposes characters from their lower-case to their upper-case value. Normally variants like e, é, è or ë, even Ë, É, È etc. will be all converted to the same uppercase value for E (ASCII 069), but if one does not want this, in the second part of the table - representing the ANSI-values to which the characters of the first part will be converted when indexing - the values can be changed accordingly. For example : if one needs 'ñ' to translate to 'Ñ' instead of the default 'N', change the value '241' on position 241 of the ANSI-table to '209'.
[bookmark: d0e1166]1.3.3. PFT's in ABCD
We stated it already before : the ISIS Formatting Language makes ISIS so special and powerful, at least at the side of the local system managers, who can define to a high degree the exact behavior of their system without having to know how to program it. One can say of course that the Formatting Language is a programming language in itself, but we protest : the learning curve is much less as the FL follows the logics of librarians e.g. much more than a programming language does. Anyway thousands of librarians all over the world have already proven to be capable of doing marvellous things with this 'intermediate' layer of control : intermediate because in our view it comes nicely in between the end-user interface control (clicking on buttons, selecting from a menu etc.) and the real system programming.
All in all, there are only a limited elements to be understood and used, but by doing this for each and every relevant field in your database, the whole series of instructions starts looking quite complicated. Therefore the 'art' of reading or understanding, thus also writing a PFT is to split the scripts in the many mostly short-and-easy sub-statements and not being frightened by their multitude. Real PFT's vary from the most simple atomic statements like 'v1' upto lists of thousands of concatenated statements in files of several Kilobytes. One of the biggest PFT's used in ABCD is e.g. 'marclte.pft' (the format for MARC Lite), taking about 14Kb, which is the equivalent of several dense text-pages).
From a technical point of view, a PFT is a text-file, so it can be edited also directly in the OS with a text-editor (Notepad, nano...). The only difference then is that if working not within ABCD one has to also manually secure inclusion of new formats in the list of available PFT's, which is actually the file 'formatos.dat' in the relevant language folder of the pfts-subfolder of your database. As with all ABCD 'tables' or 'data'-files they have 2 columns separated by a pipe : first comes the internal identifier, next the display-text for that value.
Whereas this manual on ABCD does not pretend to also be a course or manual on the ISIS Formatting Language, we need to mainly refer to the CISIS Formatting Language Reference Manual, published by BIREME. PDF-versions of this document (about 42 pages) can be found in several websites (e.g. of BIREME themselves) but also online-versions are available, e.g. http://biblioteca.enap.gov.br/phl8/format34.htm .
In this discussion we want to focus on some special uses of the FL to add more functionality into ABCD : cross-referencing and adding JavaScripts.
[bookmark: d0e1185]1.3.3.1. Cross-referencing from record-displays to other search results.
This technique, abbreviated as 'cross-searches', involves presenting in a search results hyperlinks which, when clicked on, will result in a new search performed on the clicked term. This way e.g. author names or subjects could be presented, facilitating new searches for publications on the same author or on the same (or related) subject. With such techniques one can fully apply the philosophy of the 'FRBR' standard (Functional Requirements for Bibliographic Records) which promotes navigating accross different levels from its model (e.g. from 'works' to their concrete emanations in different expressions : movies, poetry, novels...).
In fact in ABCD two methods for this are implemented : a new search result presentation within ABCD Central or passing on the new search to the iAH OPAC module of ABCD to be opened there in a new window. Basically the same techniques are applied to reach these two results :
1. [bookmark: d0e1194][bookmark: d0e1193]include a JavaScript in 'prologoact.pft' : prologoact.pft is a PFT (in the subfolder bases/www) which is called by ALL ABCD display windows as a 'prolog' to prepare the results window, so this is the ideal location to put code which should be 'known' by all following formats : (note that the whole text is cited in between single quotes as all non-database strings need to be quoted in the ISIS FL) :
where, as can be seen, an anchor <a href> creates a normal HTML hyperlink passing the author-name and the prefix 'AU_' (used to index authornames) to the Javascript.
' <script>
function CruzarABCD(Termino,Prefijo){
top.browseby="search"
top.Expresion="\""+Prefijo+Termino+"\""
top.mfn=1
top.Menu("ejecutarbusqueda");
}
</script> '
Then use this JavaScript inside your PFT by including a statement like the following one (here we use it for V100 as an author-field) :
(if p(V100) then ``v100`` fi/)
2. [bookmark: d0e1221]Use a JavaScript to send a search to the OPAC, again quoted inside the prolog-format prologoact.pft in the bases/www subfolder :
'<script>
function Cruzar(Termino,Prefijo,Bd) {
document.cruzar.exprSearch.value=Termino
document.cruzar.indexSearch.value=Prefijo
document.cruzar.base.value=Bd document.cruzar.submit()
}
'
and refer to this JavaScript inside your PFT as follows, in a completely similar way as above :
(if p(V100) then ``v100`` fi/).
However for this to work one has to add a third step : add the following code to the 'epilogo.pft' (as prologoact.pft in the bases/www subfolder) :
<form name=cruzar action=/cgi-bin/wxis.exe/iah/scripts/ method=post target=_blank>
<input type=hidden name=IsisScript value=iah.xis>
<input type=hidden name=lang value=es>
<input type=hidden name=base>
<input type=hidden name=nextAction value=lnk>
<input type=hidden name=exprSearch>
<input type=hidden name=indexSearch>
</form>
An example of such display of a search result record (in this case taken from the iAH interface but still using an ISIS PFT) shows some descriptors as hyperlinks :

[bookmark: d0e1272]1.3.3.2. Adding JavaScripts into ABCD-formats
In fact the above described technique of 'cross-searching' already illustrates the use of JavaScripts inside ABCD-formats. Since JavaScript is a general-purpose language inside web-pages, and ABCD produces webpages all the time, we can use JavaScript for many other additional purposes.
An example is to use JavaScript to present repeatable subfields, something the ISIS FL does not do itself. The set is completely the same as the one used for cross-searches : include the script-code in the prologoact.pft to make it available to all ABCD PFT's, and call the scripts passing the correct parameters. Here is the example in concrete code, again quoted in single quotes :
'<script> function FormatearSubcamposRepetibles(fld,sep_sc,sep_occ) {
result=""
occ=fld.split("$$$")
limit=occ.length
for (ix_occ=0;ix_occ<limit;ix_occ++) {
fld=occ[ix_occ]
c=fld.split("^")
total=c.length-1
for (ix=0;ix<=total;ix++) {
if (c[ix]!="") {
result+=c[ix].substr(1)
if (ix!=total) result+=sep_sc
}
}
result+=sep_occ
}
return result
}
</script> '
This scripted function can be called as follows inside a PFT, e.g. to display a v100 with repeated subfields :
'<script>
salida=FormatearSubcamposRepetibles("'v100+|$$$|'"," -- ","
")
document.writeln(salida)
</script> '
In this call we use v100 again but add the string '$$$' to it artificially, so the JavaScript can use this special string to separate occurrences; next the same 'split' JavaScript function will be used to split into subfields with the separator '^' and count the 'lenght' of the subfield as value 'total' in the script. For each resulting subfield the occurrence separator passed (in this case : ' -- ') will be added to the resulting subfield and concatenated into one string as the final result.
In ABCD v1.2t and later this technique is already provided to get another nice presentation trick : open or close (collapse) certain (groups of) fields in the display.
With the power of JavaScript combined with the ISIS FL 'the sky is the limit'. We have seen very nice example applications of this principle, e.g. alternating background and hovering-characteristics of lists of records displayed in the ABCD Opac, based on JQuery (another 'library' of JavaScript tools). So the basic idea is always : use the power of the FL for the formatting of data from the databases and add the enormous richness of the WWW-technology like JavaScript to make it more attractive.
[bookmark: d0e1339]1.3.3.3. Special PFT's to be used in ABCD FDT's and FMT's to format authority lists ('list as' and 'extract as')
A quite different use of special PFT's is dealt with separately and is supported only by internal ABCD-mechanisms (as coded into the ABCD-scripts). Such PFT's have as their only purpose to create specific picklists as defined inthe ABCD FDT or FMT. The example used here has as its purpose to extract from an authority database (mostly not the actual database) a list of fields which will be automatically added to the current record during data-entry when an option has been selected from the picklist. Needless to say that again this can result in very powerful new functions, e.g. adding not only the name of a publisher house but also its address fields into the record, or as in the example below : adding details about a journal after having selected its name. The fields involved in the example are v1 (journal title), and v2, v3 etc. as automatically-added fields
· [bookmark: d0e1345][bookmark: d0e1344]first step : add the database with journal titles and details as 'external DB' for the picklist in your FDT and specify the prefix used to index all journal titles
· [bookmark: d0e1348]in the 'list as' column of your FDT or FMT, enter the name of the script doing the trick, e.g. 'transfer.pft
· [bookmark: d0e1351]in your 'transfer.pft' put the following code :
v1'$$$','_TAG11:'V1,'_TAG12:'V2,'_TAG13:'V3,'_TAG14:'V4,
where : v1 is the 'list as' format (as simple as possible to list the journal titles, '$$$' is the separator in between the 'list as' and 'extract as' part of the PFT (as agreed in ABCD), followed by for each automatically transferred field : first the tag of the receiving field (the value after '_TAG'), a full colon (:) and the value from the referred database to put in that local-database field. So '_TAG01:'v1 will extract V1 from the external database (the journals list) and put it into the local field v11, while v2 will go to V12 etc.
[bookmark: d0e1358]1.3.4. Type of records
Some database-structures, such as MARC, require the 'type of the record' to be specifically coded into a dedicated field of the record. The software can then use this code to adjust many features to the specific needs for the type indicated, e.g. worksheets and print-formats can be different according to this type, or simply - as is the case with MARC - the format wants to be very detailed.
The 'type of record' information needs to be gathered at the beginning of the creation of a new record, so a list of types defined (and therefore 'available') will be presented as links, each one leading to the appropriate subsequent data-entry form, as can be seen from the MARC demo in ABCD.
[!!] In order to define such types, ABCD uses a table 'Typeofrecord.tab' - located in the 'def' folder for the actual language within the www/bases/[DB]/ folder. This file is - as is often the case in ABCD - an ASCII-file which contains, for each type defined, 4 values separated by a '|' (pipe-character), so this can be edited directly with an ASCII-editor (e.g. Notepad), but within ABCD an easier-to-use table format is presented :

The example above is the MARC record-type definition, which is kept in (internal) tag 3006 and has the following 4 columns, each containing values for each type :
· [bookmark: d0e1376][bookmark: d0e1375]the name of the worksheet to be used for the given type of record - with the 'edit'-link next to this first column one can also immediately edit the worksheet
· [bookmark: d0e1379]the 'Tag1' value, which is in fact a one-character code to internally identify the type of record
· [bookmark: d0e1382]the 'Tag2' value, not used in this case
· [bookmark: d0e1385]the description of the type as it will appear in the list of available types.
Clicking on 'update' below the form will save the table with any changes made.
[bookmark: d0e1390]1.3.5. Record validation
[!!} Record validation allows the database manager to define criteria against which input for a field can and will be checked before entering it actually in the fields, or after registration of the record. Record validation in ABCD can relate to one of the following elements :
· [bookmark: d0e1396][bookmark: d0e1395]record validation : conditions can be given for each field
· [bookmark: d0e1399]begin format : code can be given to be executed when a (new) record is created, e.g. the date of creation can be added with the date() instruction
· [bookmark: d0e1402]end format : code can be given to be executed when the record is saved, e.g. the date of last update can be added with the date() instruction.
After selecting on of the three options above, clicking on one of the listed (as pre-defined) record-types will show the editor where the validation conditions can be defined.
These criteria need to be formulated into - no surprise ! - the ISIS Formatting Language. With the Formatting Language one can check a condition and if (not) met, an error message, which will be shown on the next screen, can be produced by the format. [!!] If the validation criterion was defined as 'fatal' however the record will not be saved and the error has to be corrected first.
In this menu-option from the 'Update database definitions' menu each defined field will be listed with a box to enter the validation statement. E.g. :

The format used here checks on the 'absence' of a value in field with tag 2 and if indeed absent will produce an error message that this mandatory field is missing. [!!] As stated above, errors can be marked as 'fatal' or not. With the 'ADD' link in the left-most part for each field. As shown in the illustration above, with the 'ADD'-link in the left-most column one can add more fields, even fields already used with another validation criterion to be applied.
When clicking on the 'edit' icon to the right of the edit-window for this field, the box re-appears in a separate small window for editing and the statement can also be tested on a record to see if it is doing the right thing. After editing one has to click on 'send' to put the possibly edited validation format back to the main table.
[bookmark: d0e1421]1.3.6. Advanced search form
The advanced search form is the one used in ABCD at two locations : within the cataloging module to allow the cataloger to quickly and/or efficiently identify a specific record for editing (or duplication checking or copying) and in the OPAC as the advanced search form. Here ABCD simply offers an editor for the table which defines that search form with 3 columns :

· [bookmark: d0e1433][bookmark: d0e1432]The first column is the field-name or 'index' as it will appear in the search-form
· [bookmark: d0e1436]The second column gives the identifier used for the given field (or in fact combination of fields) in the FST
· [bookmark: d0e1439]The third and last column keeps the prefix or fixed start-string which is used (if any) in the ISIS Inverted File for this index.
ABCD will also present, next (to the right) to this table, the existing FST to facilitate the identification of indexes

(fields for searching) and the identifiers used.
Clicking on 'update' saves the table, which in fact is a file 'busqueda.tab', stored in the language subfolder of the 'pfts' folder within the database folder.
[bookmark: d0e1446]1.3.7. Available databases list or table
Here simply a list is given of the databases being defined as 'available' in the ABCD-system. Actions allowed here are only changing the sequence (by moving up or down) of the databases in the list and saving the changed list.

For adding or deleting databases one has to actually create the new database or delete the one to be taken out of the list. ABCD will take care of the changes in this list automatically. [!!} Databases can be moved up or down by selecting them and using the UP/DOWN buttons as in many of such controls in the ABCD-interface.
[bookmark: d0e1459]1.3.8. [dbn].par
For each ISIS-database in a multi-database application such as ABCD, there is a file needed to tell ISIS where to find the constituting parts of the database-files - which then consequently can reside anywhere in the system. Such files are named after the database-name (therefore indicated here as [dbn] with the .par extension. Again this is a simple ASCII-file which can be edited directly or, as is the case here, from this ABCD-menu.

In principle ABCD will take care of this file and make sure that the necessary paths are available. The only special feature here - as compared to the same concept of dbn.par in other ISIS-environments, is the use of 'variables', taken from the operating system's environment variables, which can be dynamically substituted for their actual values. E.g.
%path_database%
is a variable which actually will contain the database-path defined in the config.php main configuration file of ABCD.
[!!] In the example of the illustration above, the last line is an interesting one as it gives the path to the 'loanobjects'-database for displaying copy-information (if included in one of the MARC-pft's) with the REF-function. In order to find the loanobjects-database for the use of REF->loanobjects, ISIS needs to know the path to this other database and therefore it should be included into the dbn.par.
[bookmark: d0e1479]Note
[!!] For this last feature also to work in the OPAC (iAH), one has to add the path to the first section of the dbn.def file. E.g. the loanobjects-database should be pointed to by a new line there containing : FILE loanobjects.*=%path_database%loanobjects/data/loanobjects.*
[bookmark: d0e1482]1.3.9. Help files on the database-fields
For each field in the database ABCD can provide a help-page, which can be edited from this menu-option. To support the creation of such a page, ABCD will automatically put all known information from the FDT on the given field already available. With the built-in (JavaScript-based) HTML-editor a real nice help-page can then be produced and saved. The 'preview' link of course allows checking the result of your editing effort.

[bookmark: d0e1493]1.3.10. Configure database in iAH (or OPAC)
[!!] In order to be able to use a newly defined ABCD-database with the advanced iAH OPAC-interface (or in the ABCD Site), a special configuration file is to be edited : dbn.def. (where dbn has to be substituted for the actual database-name).
This file has the following sections to be edited :
1. [bookmark: d0e1508][bookmark: d0e1507]The FILES section : here the paths to the files to be accessed need to be given. In this path both the %path_database% and %lang% variables can be used to refer to resp. the actual database and actual language in use.

2. [bookmark: d0e1517]The INDEX-DEFINITION section : here all the information for the active languages (numbered as 1, 2, 3 etc.) has to be entered (in subfields) to allow the interface to recognize the prefixes used for each searchable field and to name the field accordingly. The first line with prefix 'TW_' is the one used for the 'simple' search interface (Google-like) for searching words from the fields defined (by the prefix in the FST) to be included in this simple search. This is indicated by the presence of the subfield '^d*'.

3. [bookmark: d0e1526]The GIZMO section : here - if necessary in specific cases - gizmo databases for automatic substitution of strings by other strings (which can be used to change character sets, but also change codes and abbreviations into full values etc...) can be pointed to.
4. [bookmark: d0e1529]The FORMAT section : here the display formats used in the OPAC should be defined, with for each language (in the numbered subfields) the label to be used on the screen. Remember that only formats (files with .PFT extension) can be used which are referred to somehow in the FILES section ! Also the default format can be identified here by simply indicating which format earlier referred to should be used as default display format.

5. [bookmark: d0e1538]The HELP form section : here simply the (HTML-)files containing resp. the help-page and notes-page for the user of this database in the OPAC should be referred to.
6. [bookmark: d0e1541]The PREFERENCES section : here the system manager can indicated which of the three search interfaces (simple, advanced and free) will be available for this database, and some other additional features of the interface : whether sending a search result to an e-mail will be possible, whether the results should be listed with navigation buttons, the number of records to be shown in one page and whether XML-export will be offered.

[bookmark: d0e1550]1.3.11. Statistics : list of variables
This option simply allows quick definition of the variables from the given database with which tables for statistical analysis will be computed. For each criterion or variable (either as row or column for the table) a name and an extraction format has to be given. The extraction format - using the Formatting Language of course - exactly defines how the values in the field should be taken to compute the value in the table. By doing so it is possible e.g. to define ranges of field-values to be combined into one table-criterion. The file at stake is actually 'stats.cfg' in the (language-specific) def-section of the database-folder.

The option to define a prefix is not yet implemented in this version of ABCD. The idea is that the values would be taken from the Inverted File, prefixed with the string defined here. By doing so the values would be computed while 'inverting' the record, not at the stage of producing the statistics table, and therefore allow faster production of the table.
[bookmark: d0e1565]1.3.12. Statistics : list of tables
As with the list of variables above, ABCD also keeps a simple list of available tables, which have been defined previously, for the statistics module. This file 'tabs.cfg' equally resides in the def-subfolder of the database. Each line in this file contains three values (separated by the pipe-character) : the name of the table followed by the two criteria used in this table, e.g. :
Classification code / Publication date|Classification LC|Publication date

As can be seen from the example the editor in ABCD simplifies editing by providing each of the three values individually but also by providing lists of available row- and column-criteria.
[bookmark: d0e1584]1.4. Reports
In fact creating reports in ABCD means creating ISIS Formatting Language formats (PFT's) with which the reports will create output, because with the F.L. any type of report can be produced and saved for later re-use. We therefore refer to the section on 'Display Format (PFT)' of the 'Update Database Definitions' Central menu option. Exactly the same interface is used here.
[bookmark: d0e1589]1.5. Utilities
In this option ABCD offers some very basic operations on databases :

· [bookmark: d0e1601][bookmark: d0e1600]Initialize the database means to delete all records in the database but without changing the structures of the database.
· [bookmark: d0e1604]Delete the database of course means fully deleting the whole database with all corresponding files and folders in the ABCD bases/ folder.
· [bookmark: d0e1608][bookmark: d0e1607]Lock the database means to prevent any other users to make any changes to the records (data-entry), e.g. when a full Inverted File generation would be envisaged.
· [bookmark: d0e1612][bookmark: d0e1611]Unlock the dabase of course then means to avail the database again to other users.
Use these options with all necessary care and caution !
· [bookmark: d0e1617]Assign Control Number is the option to automatically put sequential control-numbers in a series of selected records. Only a continuous series of MFN's can be selected here.
· [bookmark: d0e1620]Link database with the copies database : as explained on the screen itself, here the option to activate the use of the copies database for the actual (bibliographic) database has to be activated.
· [bookmark: d0e1623]Reset Control Number is the function to manually re-set to a specific value the numerical value in the file 'control_number.cn' of the database, in case for some reason the numbering has to be managed manually. E.g. setting this number to 1000 will make ABCD to assign from the next record on control-numbers starting from 1000. This could be useful in conditions where e.g. different cataloging centres are using different ABCD-servers but the resulting databases have to be merged into one catalog with control_numbers not interfering, so covering different ranges. By default however reset will revert to 1 as the basic control_number to start from.
[bookmark: d0e1626]1.6. Z39.50 Configuration
Here the ABCD interface allows setting some parameters to define which servers for Z39.50 shared cataloging services will be offered in the Z39.50 list and some more parameters to ensure proper use of the protocol for the server. Such technical information can be mostly obtained from the service provider, e.g. in the case of the Library of Congress consult the following website : http://www.loc.gov/z3950/lcserver.html.
Configuring Z39.50 has the following parts :

· [bookmark: d0e1640][bookmark: d0e1639]Configure Z39.50 servers : in an interface similar to the one of users-administration, the defined servers are to be configured, with the parameters name, URL, Port, Database and UTF-8 (or not), see the illustration under here for Library of Congress. New servers of course can also be added with the 'Create'-icon.

· [bookmark: d0e1649]Conversion formats : when the incoming records (mostly in MARC21 format) need to be converted to the format used in the destination database, a form can be edited here to specify the conversion from source to destination. The name , subfields and tag of the incoming field will be listed and in the 'Conversion formats' column the ISIS F.L. defines how to extract values for this field in the destination database. ABCD comes with one demo conversion table to convert from MARC to CEPAL formats, with the following example for converting the ISSN MARC field to CEPAL.

· [bookmark: d0e1658]MARC-8 to ANSI character conversion table : this is a table which converts characters from the MARC-8 table (e.g. âa) to ANSI format (e.g. á). This table can be edited here if necessary.
· [bookmark: d0e1661]Finally the Z39.50 can be tested from here, with the same interface as used in the ABCD Data-Entry module (see infra).
[bookmark: d0e1664]1.7. Translate messages and help pages
There are two types of language-sensitive content which ABCD uses and which needs to be edited when creating or adapting new or other language versions : short messages and labels on the one hand, full help-pages on the other hand. [!!] These can be edited into other languages for each module of ABCD Central.
[bookmark: d0e1669]1.7.1. Translation of short messages and labels
Editing these is facilitated by presenting the default (English) language terms and phrases in a table in wich in the second column the new values should be put by the translator. For each of the main functions such a table is presented :

Here is a sample of some messages translated from English to Dutch for the loans module :

This screen provides a 'save' icon for storing the table with new translations.
[bookmark: d0e1692]1.7.2. Translation of help pages
Here the approach is different : a list of available help-pages is given

and for each help-file one can 'preview' or 'edit' the page. In the case of editing the built-in JavaScript-based HTML-editor will be provided :

[bookmark: d0e1711]1.8. Explore databases directory
[!!] Exploration of the databases directory can be done (when the dedicated option variable '$dirtree' is put to '1' in CONFIG.PHP !) using a special display in the ABCD-web-page of the folders of the database-folder of the system,

with some possibilities to enter within subfolders and even editing, renaming, zipping etc. some of the text-files in thereon by clicking on the 'details' icon , given e.g. the following options to apply on the selected file :

[bookmark: d0e1732]1.9. Statistics
The Statistics module of ABCD also has a dedicated chapter, so here we just refer to this chapter, as this function can also be accessed from this menu but also from the cataloging toolbar and several menu's in the acquisitions and loans modules.
	
	
	

	
	
	

	
	
	

image47.png

image48.png

image49.png

image50.png

image3.png

image4.png

image51.png

image52.png

image53.png

image54.png

image55.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.jpeg

image15.jpeg

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image1.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image2.png

image42.png

image43.png

image44.png

image45.png

image46.png

